FISH AND WILDLIFE SCIENCE PROGRAM OUTCOME ASSESSMENT REPORT

DEPARTMENT: BIOLOGICAL SCIENCES

SEMESTERS: Fall 2010 and Spring 2011

PROGRAM: B.S. in Fisheries and Wildlife Science

DATE FILED: September 27, 2010

PRIMARY AUTHOR: Dr. Tim Patton

SECONDARY AUTHORS: Drs. Wood, Corbett, Rice

REVIEWERS: Drs. Golden, Corbett, Rice, Wood

NUMBER OF STUDENTS ASSESSED: 10 for 2010-2011.
TABLE OF CONTENTS

Title Page 1
Table of Contents 2
Program Goals and Mission Statement 3
Learning Outcomes and Assessment 3
Assessing IETV and/or Web-based Instruction 11
Strengths and Weaknesses 11
Faculty Input 12
Response to Previous IAC Comments 13
Signatures 14
Appendix - Exit Survey Summary 15
PROGRAM GOALS AND MISSION STATEMENT

A. GOALS

The Fish and Wildlife Science degree program prepares students for careers with federal, state, and local government agencies, private non-profit organizations (NGOs), and private businesses, as well as for post-baccalaureate studies in fish and wildlife science and related fields. The Department strives to upgrade equipment and technology so that students have the opportunity to use state-of-the-art technology in academic and research activities.

B. MISSION STATEMENT

Our faculty is dedicated to providing the courses and applied experiences that will enable Fish and Wildlife Science students to gain employment or continue their education at the graduate level. We seek to educate our students about the theoretical, technical, and ethical aspects of the Fish and Wildlife Science profession.

LEARNING OUTCOMES

Outcome 1: Demonstrate knowledge of basic conservation principles, concepts, theories, and competency in the scientific method and the skills to use it; the acquisition, organization, and evaluation of data.

Assessment Methods

1. ETS Major Field Test in Biology
 a. Given in Senior Seminar
 b. Note: There is not a major field test or nationally-normed test for the Fish and Wildlife Science degree, so we use the ETS test. In 2009, we added a Fish and Wildlife Science Program in-house assessment test to directly assess the efficacy of our degree program.

Results

Ten Fish and Wildlife Science majors completed the ETS Major Field Test in Biology during the 2010-2011 academic year (conducted in Senior Seminar). Table 1 compares scores of Southeastern Fish and Wildlife Science students on the ETS Major Field Test in Biology with national averages. Table 2 provides a five-year comparison of ETS test overall scores and subscores for Fish and Wildlife Science students.
Table 1. Comparison of 2010-2011 Southeastern Fish and Wildlife Science graduates with national averages for the ETS Major Field Test in Biology.

<table>
<thead>
<tr>
<th>Group</th>
<th># of Students</th>
<th>Mean Score ± SD</th>
<th>Cell Biology</th>
<th>Molecular Biology and Genetics</th>
<th>Organismal Biology</th>
<th>Population Biology, Evolution, Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>F&W Science</td>
<td>10</td>
<td>139.6 ± 8.4</td>
<td>33.8 ± 10.0</td>
<td>36.7 ± 6.9</td>
<td>42.9 ± 13.0</td>
<td>49.4 ± 8.6</td>
</tr>
<tr>
<td>National Average</td>
<td>30,852</td>
<td>153.6 ± 13.1</td>
<td>54.1 ± 13.2</td>
<td>53.8 ± 13.0</td>
<td>53.2 ± 13.4</td>
<td>53.6 ± 13.2</td>
</tr>
</tbody>
</table>

Table 2. Five-year comparison (2006 – 2011) of scores in ETS Major Field Test in Biology among Southeastern Fish and Wildlife Science graduates.

<table>
<thead>
<tr>
<th>Year</th>
<th># Students</th>
<th>Mean Score ± SD</th>
<th>Cell Biology</th>
<th>Molecular Biology and Genetics</th>
<th>Organismal Biology</th>
<th>Population Biology, Evolution, Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 - 2006</td>
<td>9</td>
<td>145.0 ± 12.7</td>
<td>40.2 ± 11.6</td>
<td>41.2 ± 10.2</td>
<td>46.4 ± 15.8</td>
<td>53.2 ± 11.8</td>
</tr>
<tr>
<td>2006-2007</td>
<td>8</td>
<td>145.6 ± 6.6</td>
<td>41.5 ± 11.0</td>
<td>47.4 ± 7.0</td>
<td>40.4 ± 8.6</td>
<td>55.3 ± 5.9</td>
</tr>
<tr>
<td>2007-2008</td>
<td>6</td>
<td>140.3 ± 12.0</td>
<td>34.0 ± 10.0</td>
<td>41.0 ± 10.0</td>
<td>45.0 ± 13.0</td>
<td>46.0 ± 15.0</td>
</tr>
<tr>
<td>2008-2009</td>
<td>7</td>
<td>140.0 ± 8.3</td>
<td>34.1 ± 12.4</td>
<td>42.1 ± 11.9</td>
<td>42.4 ± 10.2</td>
<td>46.9 ± 8.1</td>
</tr>
<tr>
<td>2009-2010</td>
<td>10</td>
<td>150.9 ± 7.0</td>
<td>39.9 ± 8.4</td>
<td>43.5 ± 8.7</td>
<td>54.1 ± 7.8</td>
<td>60.7 ± 9.8</td>
</tr>
<tr>
<td>Mean 2005- 2010 (w/o SD's)</td>
<td>8</td>
<td>144.4</td>
<td>37.9</td>
<td>43</td>
<td>45.7</td>
<td>52.4</td>
</tr>
<tr>
<td>2010 - 2011</td>
<td>10</td>
<td>139.6 ± 8.4</td>
<td>33.8 ± 10.0</td>
<td>36.7 ± 6.9</td>
<td>42.9 ± 13.0</td>
<td>49.4 ± 8.6</td>
</tr>
</tbody>
</table>
Analysis and Interpretation

Overall mean ETS scores fell 11.3 points for 2010-2011 by Fish and Wildlife Science graduates compared to the previous year, and 4.8 points from the previous five-year average (Table 2). We saw drops across all four subscores compared to the previous five-year average as follows: Cell Biology, -4.1; Molecular Biology and Genetics, -6.3; Organismal Biology, -2.8; Population Biology and Ecology, -3.0. We expect our majors to do well in the Organismal Biology and Population Biology, Evolution, and Ecology areas as students have course work in this area. We expect lower scores in Cell Biology and Molecular Biology and Genetics as students have little course work in this area. However, this group of students did relatively poorly across the subgroups. Just as last year was a particularly strong cohort, this year was particularly weak one, and those poor scores were also apparent in their respective GPA’s.

We administer only the ETS test to our Fish and Wildlife Science students because prior IAC committees told us to give a nationally-normed test, even though it is not specifically relevant to the course work completed by Fish and Wildlife Science students. We stress that there is no nationally-normed test for the Fish and Wildlife Science degree from either of the two professional societies in the field. To address this need, we developed an in-house Fish and Wildlife Science program assessment test to better assess the effectiveness of our program, and began giving the exam in Fall 2009. It is given as a pre-test in Conservation of Natural Resources (Cons 1124) and as a post-test in Senior Seminar (Cons 4981). We feel this is a significant improvement over the past situation and provides a much better assessment tool, even though the test is not nationally-normed. To date, 70 students have taken the pre- or post-test. Mean pre-test and post-test scores are 37/100 (N=53) and 65/100 (N=17), respectively. In future years, we will be able to compare individual student pre- and post-test scores, but this assessment tool has not been in place long enough to allow those calculations at this time.

In 2008-2009, we received approval to change the Conservation degree requirements and renamed the degree Fisheries and Wildlife Science. This change modified our curriculum to include more required courses in specific areas and dropping courses less germane to the student’s professional development based on feedback from employers and stakeholders. We required more classes in zoology and conservation, and technical and professional writing, and dropped courses in genetics and evolution. It was our intention that these changes would address deficiencies in organismal biology and population biology as well as emphasizing technical writing skills that employers have requested from our graduates. Genetics and evolution are covered heavily in introductory biology courses and applied in various zoology and management courses. We also attempted to keep aligned with professional certification requirements of The Wildlife Society and The American Fisheries Society. These are the premier professional associations for our graduates. We believe ETS scores in Organismal Biology and Ecology will increase with this curriculum change. However, we stress that, because the curriculum change was implemented in Fall 2009, the 10 students on which this assessment is based are following the previous program curriculum.

Program Modifications

We made a change in Senior Seminar to be more focused on Fish and Wildlife material rather than Biology. Beginning Fall 2010, the class met separately from the Biology Senior Seminar. Beginning Spring 2011, the class included co-teaching from all four instructors in the Fisheries and Wildlife Program. We think this will improve the efficacy of the seminar class.
Outcome 2: Manifest both oral and written communication skills in presentation of complex conservation and biological topics.

Assessment Methods

1. Research Paper and Oral Presentation in Senior Seminar

Results

In previous assessments, we used scores given on a research paper and an oral presentation assigned in Senior Seminar (Cons/Biol 4980) to assess these respective skills. Those components are no longer required in Senior Seminar, so we can no longer use those scores for assessment. The aforementioned curriculum change included the addition of Technical and Professional Writing in the new program (Eng 3903), and several classes in the major require writing a large research paper, including Ecology (Biol 3414) and Ornithology (Zool 4534). Because Ecology is a 3000-level course, we provide the scores from research papers written in Ornithology. Further, oral presentations are required in Ichthyology (Zool 4334) and Herpetology (Zool 4534), and we have provided scores from presentations given in those classes. The table below provides scores from the previous five years from Senior Seminar, and for the period of assessment from scores assigned in Ornithology (research papers) and Ichthyology and Herpetology (oral presentations). The average score for the research paper was 79%, which is 6% lower than the previous 5-year average. This difference may reflect the fact that it is a different instructor now assigning and grading the papers. The average score for oral presentations was 90%, which is 3% higher than the previous 5-year average.

Five-year Summary

<table>
<thead>
<tr>
<th>Year</th>
<th>Research Paper</th>
<th>Oral Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-2006</td>
<td>83%</td>
<td>91%</td>
</tr>
<tr>
<td>2006-2007</td>
<td>70%</td>
<td>90%</td>
</tr>
<tr>
<td>2007-2008</td>
<td>91%</td>
<td>83%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>89%</td>
<td>74%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>91%</td>
<td>97%</td>
</tr>
<tr>
<td>5-year Mean</td>
<td>85%</td>
<td>87%</td>
</tr>
<tr>
<td>2010-2011</td>
<td>79%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Fish and Wildlife Students also presented research data at various conferences and public meetings. The following is a summary list of student oral presentations in 2010-2011:

<table>
<thead>
<tr>
<th>Conference</th>
<th>Number Given</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oklahoma Chapter, American Fisheries Society</td>
<td>1</td>
</tr>
<tr>
<td>Oklahoma Alliance for Minority Participation Annual Research Conference</td>
<td>3</td>
</tr>
<tr>
<td>Oklahoma Ornithological Society</td>
<td>2</td>
</tr>
<tr>
<td>Prairie and Timbers Audubon Society</td>
<td>2</td>
</tr>
<tr>
<td>Coal County Conservation Fair</td>
<td>2</td>
</tr>
</tbody>
</table>
Analysis and Interpretation

The research paper scores were slightly lower and presentation scores were slightly higher than previous 5-year average. Part of these differences may be due to the fact that papers and presentations are now assessed in a different class, and therefore by different instructors, than those on which the 5-year average was based. However, neither score departs much from the 5-year average.

2. Student Questionnaire: students given an exit survey in Senior Seminar

Results

Ten graduating Fish and Wildlife Science majors completed the exit survey. Among these, 100% indicated they had to write 4 or more short (<5 pages) assignments and 90% had to write 4 or more long (>5 pages) assignments in Fish and Wildlife Science courses. All (100%) Fish and Wildlife Science majors indicated that they had to give 4 or more oral and/or poster presentations in their Fish and Wildlife Science courses. Two students (20%) indicated they gave at least one oral presentation at a state- or national-level conference. All of these values are up from the previous year, and from the previous 5-year average.

Five-year Summary

<table>
<thead>
<tr>
<th>Year</th>
<th>Short Papers</th>
<th>Long Papers</th>
<th>Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005-2006</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2006-2007</td>
<td>100%</td>
<td>100%</td>
<td>83%</td>
</tr>
<tr>
<td>2007-2008</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>67%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>67%</td>
<td>78%</td>
<td>85%</td>
</tr>
<tr>
<td>5-year Mean</td>
<td>87%</td>
<td>96%</td>
<td>94%</td>
</tr>
<tr>
<td>2010-2011</td>
<td>100%</td>
<td>90%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Analysis and Interpretation

We are pleased with the exit survey data as it strongly indicated that students were required to write numerous papers and give presentations. All scores were higher than the previous year and the previous 5-year average. Despite the fact the 2010-2011 was higher than the previous 5-year average, the 5-year average still demonstrates that our students are producing an exemplary number of papers and presentations. Some lower scores reflect students who may not have completed all these assignments at time they took the survey. All students are required to do at least 4 or more assignments in these areas as part of our curriculum, so the scores should be 100% across the board. These data demonstrate that the outcome has been met successfully. Our stakeholders stress written and oral communication frequently and we have maintained a high level of student experiences in this area. Additionally, we frequently receive feedback from our stakeholders that our students outperform students from other universities with respect to interview skills.
Outcome 3: Show proficiency in library and computer skills in obtaining information and analyzing data.

Assessment Methods

1. Research Paper and Oral Presentation in Senior Seminar - see Outcome 2 above.
2. Capstone Course - see Outcome 1 above.

Outcome 4: Be exposed to methods of recognizing, preventing, and responding appropriately to laboratory hazards or hazardous conditions.

Assessment Methods

1. Student Questionnaire

Results

Safety is an important aspect of many Fish and Wildlife courses. Twelve of our regularly offered courses include both lab and field components and we offer several special topics courses with field components. All professors provide students handouts about lab/field safety at the beginning of the semester and/or also in their syllabi. All labs are up to safety standards upon inspection including MSDS sheets, fire extinguishers, eye washes, deluge showers, goggles, gloves, safety maps on walls, and other safety equipment. These features are discussed at the beginning of each semester.

Students indicated in the exit survey that 100% of them had received excellent information regarding safety procedures in field courses and 88% had received excellent or more than adequate safety information in lab courses.

Five-year Summary. Percent identifying as having excellent or more than adequate safety information provided in lab and field classes.

<table>
<thead>
<tr>
<th>Year</th>
<th>Field Safety</th>
<th>Lab Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2007-2008</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>83%</td>
<td>100%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>100%</td>
<td>88%</td>
</tr>
<tr>
<td>2010-2011</td>
<td>90%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Analysis and Interpretation

We believe our assessment tools and data show that our faculty is committed to creating a culture of safety in the lab and in the field. Students clearly stated that they received multiple safety briefings and handouts that emphasized safety. Our safety track record is good in this area and we are always vigilant. The five-year summary indicates that we have maintained a consistently high student response to our safety instructions in each class.
Outcome 5: Qualify for entry-level employment or continuing education in Fish and Wildlife or related fields.

Assessment Methods

1. Student Questionnaire

Results

We used the data from the 10 students who took the exit survey and answered two primary questions about how they felt about their education in the Fish and Wildlife degree program at Southeastern. In response to the question about overall quality of instruction in the Fish and Wildlife program, 90% stated that they received excellent instruction and 10% indicated more than adequate instructional quality. In response to the question about their overall satisfaction about the Fish and Wildlife degree program, 70% rated their satisfaction as excellent and 30% rated it as more than adequate.

Analysis and Interpretation

Based on student responses (and post-graduate success - see below), they quality education in our program, and they were prepared to compete with graduates of other institutions in the current workforce.

We routinely invite guest speakers to our courses and also take field trips to visit Fish and Wildlife professionals in the field. For example, the CONS 1124 class has 5-6 guest speakers per semester that discuss with our students the merits of our Fish and Wildlife degree in obtaining employment with various agencies or private industry. We share the curriculum we offer with the guest speakers and they offer feedback to us. We often invite students that graduated from Southeastern so the students and faculty get direct feedback on our program from recent and past graduates working with their degree in the Fish and Wildlife field.

Similarly, students who graduate with a Fish and Wildlife degree are contacted informally to see how they are doing and how we could better service our students based on the graduates’ experiences in the workforce. We encourage them to maintain contact with us throughout their career for similar feedback. This has been part of the assessment culture in the Fish and Wildlife program since its inception.

List of Stakeholders, Employers, and Relevant Constituents

Current SOSU students and faculty
Oklahoma Department of Wildlife Conservation
Oklahoma Department of Environmental Quality
U.S. Forest Service
U.S. Department of Homeland Security

SOSU graduates
U.S. Fish and Wildlife Service
U.S. Army Corps of Engineers
U.S. National Park Service
U.S. Department of Defense
Texas Parks and Wildlife Oklahoma and Texas high schools
Environmental Consulting companies Timber companies
Natural Gas and Oil companies The Nature Conservancy
Ducks Unlimited Quail Unlimited

Graduate M.S. and Ph.D. programs at OU, OSU, LSU, NMSU, Texas Tech among others

3. Professional Placement of Graduates in their Degree Field
 a. Maintain contact with graduates through email, Facebook and other interactive formats.

Results
Post-graduation success of Fish and Wildlife Science majors is a critical measure of a program’s success. We present below some of the early outcomes for our 2009-2010 graduates.

Outcomes:
While 10 students were in Senior Seminar during Spring 2011 and took the exit exam, many of those remained at SOSU and are scheduled to graduate in Fall 2011. Accordingly, the number of students was graduating during 2010-2011 was 5. Among these, 80% are working in their field or are attending graduate school in their field, as follows:

- 1 started employment with an environmental consulting company
- 1 started employment with the US Army Corps of Engineers as a Park Ranger
- 1 started an MS program at Oklahoma State University
- 1 started a PhD program at the University of Louisville
- 1 is employed in an area outside of the fisheries and wildlife field

Although we do not have a long-term monitoring method to study post-graduate outcomes of our students, we receive frequent feedback from alumni about their career successes. We periodically try to contact students and see if they are using their degree in their career. We estimate approximately 70% of our graduates in the last five years are working in their degree field; either as graduate students or employed in the Fish and Wildlife Science field in some capacity.

Analysis and Interpretation

We are pleased at the high percentage of students entering graduate programs post-graduation. We have strongly encouraged students to obtain a graduate degree to be more competitive in a challenging job market. Most fish and wildlife biologist jobs now require or strongly suggest at least a masters degree. We believe our program has been successful in placing graduates consistently in the job market and graduate programs. We will continue to try to monitor post-graduate success of our majors.
ASSESSING IETV AND/OR WEB-BASED INSTRUCTION

No classes are offered via IETV or web-based instruction in the Fish and Wildlife Science degree program. We do not offer distance learning in this degree program because labs, field trips, and field projects are required in these classes. Field skills can’t be taught online (e.g., trapping, handling snakes and mammals, measuring water quality parameters, etc.), so we focus on in-person learning rather than distance learning.

STRENGTHS AND WEAKNESSES - INTERNAL

In 2009-2010, the Fish and Wildlife Science degree program underwent external program review. Our external reviewers ranked the program “Excellent” and the faculty “Outstanding”. They emphasized our curriculum requirements, field experiences, and technologies (e.g., GIS) as strengths. Weaknesses included absence of departmental vehicles, limited degree-specific library resources, and heavy teaching loads.

STRENGTHS AND WEAKNESSES - INTERNAL

We gathered information from the Fish and Wildlife Science faculty, student exit surveys, and recently graduates. We will continue to gather data in these areas as appropriate and evaluate. Summary data is listed in Appendix 1.

Strengths:
1. Small class sizes are optimal for field courses
 - Student exit surveys indicated 90% of graduates felt class sizes were just right.
2. Many field trips and labs
 - 90% of graduates indicated field trips, labs, and hands-on experiences were the best experiences of the program.
3. Access to faculty research projects
 - Virtually all students interested in doing so can participate in faculty-supervised research
4. Elective classes that are field-based
 - Full enrollments in special topics classes like River Ecology, Coastal Ecology, Fire Ecology, and Field Ornithology indicate strong student support of this part of our program
5. Good diversity of classes in the curriculum
 - 58 hours of required course work across broad spectrum of Fish and Wildlife Science
6. Numerous presentations by guest speakers who are biologists
 - 70% of our students indicated they had at least 4 or more guest speakers in their classes
7. Opportunities to attend professional conferences with faculty
 - Last year students attended professional meetings of the American Fisheries Society, Oklahoma Ornithological Society, Oklahoma Academy of Science, and the Oklahoma Ornithological Society among others. Many of these students presented an oral or poster presentation.
8. High level of job placement in the field
 - Most of our graduates last year earned a place in graduate school or the workforce in their field
9. Frequently receive positive feedback from our graduates
 - 90% of our graduates last year indicated an Excellent rating of our program, 10%
 indicated more than adequate
10. Good interaction among Fish and Wildlife faculty
 - See #7 above
11. Strong professional work ethic among most students
 - Graduates endure a lengthy degree with many hours outside class spent on field trips,
 projects, and elective field classes.
12. Access to internships in the field
 - Students last year interned locally with the Natural Resources Conservation Service,
 U.S. Fish and Wildlife Service, Oklahoma Department of Wildlife Conservation,
 Environmental consulting services, and the USDA Wildlife Services.

Weaknesses:
1. Employers emphasize students need better communication skills
 - Feedback from guest speakers have emphasized this in multiple classes; however, they
 make this comment about students entering the field in general, not SOSU students in
 particular
2. Enrollment numbers low
 - Typically graduating 8-10 students/year, but typically start with double that number as
 incoming freshman
3. Academic quality of students low upon admittance to Southeastern
 - 50% drop in students majoring in Fish and Wildlife by junior year.
4. No freshman orientation course
5. No entomology course
6. Southeastern van requirements impede our ability to deliver our field classes as easily as in
 the past
 - Classes with 24 students require 3 vehicles and 3 van safety certified drivers that are
 employed by university; these criteria are almost never met
7. Poor professionalism and lack of work ethic among incoming students
 - See #3 above
8. Little experience in systematic botany in summer and fall due to lack of courses during those
 semesters
9. High number of transfer students that have poor preparation for Fish and Wildlife courses
 prior to Southeastern
10. Poor math and writing skills of incoming students

HOW HAS FACULTY HAD INPUT INTO THE ASSESSMENT PROCESS?

All Fish and Wildlife faculty assisted in the development of the assessment plan. Each
faculty member has the opportunity to review/edit the assessment report. The Department is
very open and collaborative when faculty feel that changes need to be made in the program (e.g.,
recent degree program curriculum changes. Listed below are specific duties of faculty members:
1. ETS Major Field Test in Biology given by Dr. Wood in Senior Seminar. Analyzed by Dr. Patton
2. Writing assignments and oral presentations given and graded by Dr. Wood in Ornithology and Dr. Patton in Ichthyology and Herpetology.
3. Senior Seminar content designed by all conservation faculty members and taught by collaboratively by all Fisheries and Wildlife faculty
4. Exit survey given to graduating seniors during Senior Seminar by Dr. Wood. Analyzed by Dr. Patton
5. Feedback of professional job placement by graduates by all Fish and Wildlife Science faculty.
6. All Fish and Wildlife Science faculty participated in developing the new Fish and Wildlife Science mission statement.
7. All Fish and Wildlife Science faculty were consulted and had input on our safety procedures, handouts, and syllabi statements.
8. All Fish and Wildlife Science faculty collaborated on developing our new curricula for the Fish and Wildlife Science Senior Seminar starting in Spring 2011.

RESPONSE TO IAC COMMITTEE EVALUATION 2010-2011

We did not receive any comments that required a response.

Question Number:

1. This question identified the student's major.

2. What is your approximate undergraduate grade point average?
 A. 3.60-4.00 (0%) B. 3.20-3.59 (30%) C. 2.80-3.19 (40%) D. 2.40-2.79 (10%) E. 0%

3. What is your approximate grade point average in your major?
 A. 3.60-4.00 (10%) B. 3.20-3.59 (10%) C. 2.80-3.19 (40%) D. 2.40-2.79 (30%) E. 10%

4. What is your gender?
 A. Female (10%) B. Male (90%)

5. What is your race/ethnicity? A. African American (0%) B. Caucasian (100%)
 C. Hispanic (0%) D. Native American (11%) E. Other minority (11%)

6. Did you complete your entire undergraduate education at Southeastern?
 A. Yes (50%) B. No (50%)

7. Overall, how well did syllabi for courses in your program reflect the objectives of each course?
 A. Very Well (50%) B. Well (40%) C. Adequately (10%)

8. Overall, how well did syllabi of courses in your program reflect grading policies of each course?
 A. Very Well (40%) B. Well (40%) C. Adequately (20%)

9. Overall, how well did syllabi of courses in your program reflect attendance policies of each course?
 A. Very Well (50%) B. Well (40%) C. Adequately (10%)

10. How many papers (>5 typed pages + lit. cited) did you have to write in your program courses?
 A. 0 (0%) B. 1 (10%) C. 2 (0%) D. 3 (10%) E. 4 or more (80%)

11. How many writing assignments <5 pages did you have to write in your program courses?
 A. 0 (0%) B. 1 (0%) C. 2 (0%) D. 3 (0%) E. 4 or more (100%)

12. How many oral/poster presentations did you have to give by yourself in your program courses?
 A. 0 (0%) B. 1 (0%) C. 2 (10%) D. 3 (10%) E. 4 or more (80%)

13. How many oral/poster presentations did you have to give with others in your program courses?
 A. 0 (10%) B. 1 (30%) C. 2 (10%) D. 3 (10%) E. 4 or more (40%)

14. How many oral/poster presentations did you give at professional meetings (state to national)?
 A. 0 (60%) B. 1 (10%) C. 2 (10%) D. 3 (0%) E. 4 or more (20%)

15. How many field trips did you take in courses taken in your program?
 A. 0 (0%) B. 1 (0%) C. 2 (10%) D. 3 (10%) E. 4 or more (90%)

16. How many outside speakers gave presentations to classes that you completed in your program?
 A. 0 (0%) B. 1 (0%) C. 2 (10%) D. 3 (20%) E. 4 or more (70%)
17. Were you provided information concerning safe laboratory procedures in your program courses?
A. Exceptional (40%) B. More than Adequate (60%)

18. Were you provided information concerning safe operating procedures in the field?
A. Exceptional (40%) B. More than Adequate (40%) E. None at all (10%)

19. Overall, how would you rate the quality of the program you completed?
A. Excellent (90%) B. More than Adequate (10%) C. Adequate (0%) D. Fair (0%)

20. Overall, how would you rate the lecture portion of the classes in the program you completed?
A. Excellent (40%) B. More than Adequate (60%)

21. Overall, how would you rate the laboratory portion of the classes you completed in your program?
A. Excellent (50%) B. More than Adequate (50%) C. Adequate (0%)

22. Overall, how would you rate the use of educational technology by professors in your program?
A. Excellent (40%) B. More than Adequate (60%)

23. Overall, how would you rate the laboratory facilities and equipment in your program?
A. Excellent (0%) B. More than Adequate (50%) C. Adequate (40%) D. Fair (10%)

24. Overall, how would you rate the lecture facilities in your program?
A. Excellent (0%) B. More than Adequate (80%) C. Adequate (20%)

25. This question was left blank on the Scantron form.

26. Overall, how would you rate the number of students in individual classes in your program?
A. Way too few (0%) B. Too few (10%) C. About right (90%)

27. Overall, how would you rate the number of students in your program?
A. Way too few (0%) B. Too few (60%) C. About right (40%)

28. Overall, how would you rate the qualifications of faculty in your program?
A. Excellent (50%) B. More than Adequate (40%) C. About right (10%)

29. Overall, how would you rate the quality of instruction in your program?
A. Excellent (40%) B. More than Adequate (60%)

30. Overall, how would you rate your satisfaction with the program you completed?
A. Excellent (70%) B. More than adequate (30%)

31. Overall, how would you rate the concern for students of faculty in the program?
A. Excellent (40%) B. More than Adequate (40%) C. Adequate (20%)

32. Overall, how would you rate curricular/academic advising provided by faculty in the program?
A. Excellent (80%) B. More than Adequate (20%)

33. Overall, how would you rate the career advising provided by the faculty in the program?
A. Excellent (60%) B. More than Adequate (30%) C. Adequate (0%) D. Fair (10%)
34. What was your favorite course(s)?
Ornithology (5) Fish and Wildlife Techniques (1), Ichthyology (1), Fisheries and Wildlife Management (1), Limnology (1), River Ecology (1)

35. What was your least favorite course(s)?
Systematic Botany (4), Evolution (2), General Botany (1), Soils (1), Biostats (1), GIS (1)

36. What was your most difficult course(s)?
Fish and Wildlife Techniques (2), Fisheries and Wildlife Management (2), Biostatistics (2), Mammalogy (1), Herpetology (1), Ichthyology (1)

37. What was your least difficult course(s)?
Environmental Policy and Law (5), Conservation of Natural Resources (1), Senior seminar (1), Ornithology (1), Soils (1)