Math 2283 - Honors Logic Homework - Chapter 4

Name: \qquad

1. Consider the following sets:

$$
\begin{aligned}
& A=\{x \mid x \text { is a US state bordering the Atlantic Ocean. }\} \\
& B=\{x \mid x \text { is a US state bordering the Pacific Ocean. }\} \\
& C=\{x \mid x \text { is a US state which has a coast on the Gulf of Mexico. }\} \\
& D=\{x \mid x \text { is a US state which shares a border with Canada. }\} \\
& E=\{\text { Texas, Oklahoma, Arkansas }\} \\
& F=\{x \mid x \text { is a US state which shares no border with any other US state. }\} \\
& G=\{x \mid x \text { is a US state whose has as part of its border the Red River of the South. }\}
\end{aligned}
$$

Relate the following pairs of sets using the relations: subset, superset, overlap, disjoint, and equal.
(a) $A \quad B$
(b) $A \quad C$
(c) $F \quad B$
(d) $E \quad G$
(e) $D \quad B$
(f) $C \quad G$
2. Determine which of the fundamental relations (cf. Theorem 4.1) hold between the following pairs of intervals:
(a) $[2,4],[5,8]$
(b) $[4,7],[3,5]$
(c) $[4,7],[4,7]$
(d) $[1,3],[-2,4]$
(e) $[1,3],[1,2]$
(f) $[0,1],[-2,1]$
(g) $[1,7],[-2,4]$
(h) $[-2,10],[1,2]$
(i) $[1,1],[-1,2]$
3. Draw two boxes K and L so that they stand in one of the following relations (cf. Theorem 4.1):
(a) $K=L$
(b) the box K is a proper subclass of the box L
(c) the box L is a proper subclass of the box K
(d) the boxes K and L overlap
(e) the boxes K and L are disjoint
4. Which of the cases from problem 3 are eliminated if K and L are congruent?
5. Which of the cases from problem 3 are eliminated if we consider only the perimeters of K and L (hence K and L are rectangles)?
6. Is the following sentence (which has the same structure as the Law 4.4, the Law of Class Transitivity for Inclusion, of Section 4.4) true?

If K is disjoint from L and L is disjoint from M, then K is disjoint from M.
7. Convert the following logical sentence into set notation so that there are no logical connectives or element symbols, instead only set operations and set relations.

$$
\sim(x \in K \vee x \in L) \longleftrightarrow(\sim x \in K \wedge \sim x \in L)
$$

8. Let $\triangle A B C$ be an arbitrary triangle, with an arbitrary point D lying on line segment $\overline{B C}$. Express your answers to the following two questions in formulas:
(a) What figures are formed by the union of the two triangles $\triangle A B D$ and $\triangle A C D$?
(b) What figures are formed by the intersection of the two triangles $\triangle A B D$ and $\triangle A C D$?
9. Represent an arbitrary square:
(a) as the union of two trapezoids,
(b) as the intersection of two triangles.
10. Let K and L be two arbitrary classes. What classes are $K \cup L$ and $K \cap L$ in the case $K \subseteq L$?
11. Let K be an arbitrary class. Determine each of the following classes:
(a) $K \cup U$
(b) $K \cap U$
(c) $\emptyset \cup K$
(d) $\emptyset \cap K$

Prove each of the following laws, given arbitrary classes K, L, and M.
12. Law of Simplification for Union: $K \subseteq K \cup L$
13. Law of Simplification for Intersection: $K \cap L \subseteq K$
14. Distributive Law of Intersection over Union: $K \cap(L \cup M)=(K \cap L) \cup(K \cap M)$
15. Distributive Law of Union over Intersection: $K \cup(L \cap M)=(K \cup L) \cap(K \cup M)$
16. The Law of Double Complement: $\left(K^{\prime}\right)^{\prime}=K$
17. De Morgan's Law for Union: $(K \cup L)^{\prime}=K^{\prime} \cap L^{\prime}$
18. De Morgan's Law for Intersection: $(K \cap L)^{\prime}=K^{\prime} \cup L^{\prime}$
19. Consider the following three sets:
(a) The set of all natural numbers greater than 0 and less than 4.
(b) The set of all rational numbers greater than 0 and less than 4 .
(c) The set of all irrational numbers greater than 0 and less than 4 .

Which of these set are finite and which are infinite?
20. Define $U=\mathbb{N}$ to be the set of all positive integers, and $\mathbb{K}=\{6,12,18, \ldots\}$. Determine all values which make the following sentential function true.

$$
\forall x \in \mathbb{K}\left(x / y \in \mathbb{N} \wedge y \in \mathbb{K}^{\prime}\right)
$$

