Math 2283 - Honors Logic

Homework - Chapter 4

Name:

1. Consider the following sets:

 $A = \{x \mid x \text{ is a US state bordering the Atlantic Ocean.}\}$

 $B = \{x \mid x \text{ is a US state bordering the Pacific Ocean.} \}$

 $C = \{x \mid x \text{ is a US state which has a coast on the Gulf of Mexico.} \}$

 $D = \{ x \mid x \text{ is a US state which shares a border with Canada.} \}$

 $E = \{$ Texas, Oklahoma, Arkansas $\}$

 $F = \{x \mid x \text{ is a US state which shares no border with any other US state.}\}$

 $G = \{x \mid x \text{ is a US state whose has as part of its border the Red River of the South.}\}$

Relate the following pairs of sets using the relations: subset, superset, overlap, disjoint, and equal.

(a) A	B	(b) A	C	(c) F	B
(d) E	G	(e) D	B	(f) C	G

- 2. Determine which of the fundamental relations (cf. Theorem 4.1) hold between the following pairs of intervals:
- 3. Draw two boxes K and L so that they stand in one of the following relations (cf. Theorem 4.1): (a) K = L
 - (b) the box K is a proper subclass of the box L
 - (c) the box L is a proper subclass of the box K
 - (d) the boxes K and L overlap
 - (e) the boxes K and L are disjoint
- 4. Which of the cases from problem 3 are eliminated if K and L are congruent?

5. Which of the cases from problem 3 are eliminated if we consider only the perimeters of K and L (hence K and L are rectangles)?

6. Is the following sentence (which has the same structure as the Law 4.4, the Law of Class Transitivity for Inclusion, of Section 4.4) true?

If K is disjoint from L and L is disjoint from M, then K is disjoint from M.

7. Convert the following logical sentence into set notation so that there are no logical connectives or element symbols, instead only set operations and set relations.

$$\sim (x \in K \lor x \in L) \longleftrightarrow (\sim x \in K \land \sim x \in L)$$

8. Let $\triangle ABC$ be an arbitrary triangle, with an arbitrary point D lying on line segment \overline{BC} . Express your answers to the following two questions in formulas:

- (a) What figures are formed by the union of the two triangles $\triangle ABD$ and $\triangle ACD$?
- (b) What figures are formed by the intersection of the two triangles $\triangle ABD$ and $\triangle ACD$?

9. Represent an arbitrary square:

 $\mathbf{2}$

(

- (a) as the union of two trapezoids,
- (b) as the intersection of two triangles.
- 10. Let K and L be two arbitrary classes. What classes are $K \cup L$ and $K \cap L$ in the case $K \subseteq L$?
- 11. Let K be an arbitrary class. Determine each of the following classes:

a)
$$K \cup U$$
 (b) $K \cap U$ (c) $\emptyset \cup K$ (d) $\emptyset \cap K$

Prove each of the following laws, given arbitrary classes K, L, and M.

- 12. Law of Simplification for Union: $K \subseteq K \cup L$
- 13. Law of Simplification for Intersection: $K \cap L \subseteq K$
- 14. Distributive Law of Intersection over Union: $K \cap (L \cup M) = (K \cap L) \cup (K \cap M)$
- 15. Distributive Law of Union over Intersection: $K \cup (L \cap M) = (K \cup L) \cap (K \cup M)$
- 16. The Law of Double Complement: (K')' = K
- 17. De Morgan's Law for Union: $(K \cup L)' = K' \cap L'$
- 18. De Morgan's Law for Intersection: $(K \cap L)' = K' \cup L'$

19. Consider the following three sets:

- (a) The set of all natural numbers greater than 0 and less than 4.
- (b) The set of all rational numbers greater than 0 and less than 4.
- (c) The set of all irrational numbers greater than 0 and less than 4.

Which of these set are finite and which are infinite?

20. Define $U = \mathbb{N}$ to be the set of all positive integers, and $\mathbb{K} = \{6, 12, 18, \ldots\}$. Determine *all* values which make the following sentential function true.

$$\forall x \in \mathbb{K} \ (x/y \in \mathbb{N} \land y \in \mathbb{K}')$$