Math 2283 - Honors Logic

Homework - Chapter 8

Name:

Axiom 1. $\forall x, y \ (x = y \lor x < y \lor x > y)$

Axiom 2. $x < y \rightarrow y \not< x$

Axiom 3. $x > y \rightarrow y \not> x$

Axiom 4. $(x < y \land y < z) \rightarrow x < z$

Axiom 5. $(x > y \land y > z) \rightarrow x > z$

Theorem 1. $x \not< x$

Theorem 2. $x \not> x$

Theorem 3. $x > y \longleftrightarrow y < x$

Theorem 4. $x \neq y \longleftrightarrow (x < y \lor y < x)$

Theorem 5. $x \neq y \longleftrightarrow (x > y \lor y > x)$

Theorem 6. For any numbers $x, y \in \mathbb{R}$, exactly one of the three formulas: x = y, x < y and x > y is satisfied.

Theorem 7. $x \le y \leftrightarrow x \not> y$

Theorem 8. $x < y \leftrightarrow (x \le y \land x \ne y)$

1. Let the formula:

$$x \otimes y$$

express the fact that the numbers x and y satisfy one of the following conditions:

- (i) the number x has a smaller absolute value than the number y,
- (ii) if the absolute values of x and y are the same, x is negative and y is positive.

In logical symbolism, this is given by

$$x \otimes y \overset{def}{\longleftrightarrow} \left[\left(|x| < |y| \right) \, \vee \left(|x| = |y| \wedge \left(x < 0 \wedge y > 0 \right) \right] \right]$$

Further, let the relation \otimes to be defined in terms of \otimes as follows:

$$x \otimes y \stackrel{def}{\longleftrightarrow} y \otimes x.$$

Show, on the basis of arithmetic, that the set of all numbers and the relations \odot and \odot just defined constitute a model of the first group of axioms.

2. Establish the validity of the following general law of the theory of relations (cf. remarks made in Section 6.2):

Theorem 1'. Every relation R which is asymmetrical in the class K is also irreflexive in that class.

3. Prove the following:

Theorem 2'. Every relation R which is irreflexive and transitive in the class K is also asymmetrical in that class.

5. Derive the following theorems from Axiom 4 and Definition 1:

Theorem D. $(x < y \land y \le z) \rightarrow x < z$

Theorem E. $(x \le y \land y < z) \rightarrow x < z$

Theorem F. $(x \le y \land y < z \land z \le t) \rightarrow x < t$

- 6. Show that the relations \leq and \geq are reflexive, transitive, and connected. Are these relations symmetrical or asymmetrical?
- 7. Between which of the relations: $=, <, >, \neq, \leq,$ and \geq , does the relation of inclusion hold?